holoviews.core.data.xarray module#

class holoviews.core.data.xarray.XArrayInterface(*, name)[source]#

Bases: GridInterface

Methods

applies(obj)

Indicates whether the interface is designed specifically to handle the supplied object's type.

compute(dataset)

Should return a computed version of the Dataset.

coords(dataset, dimension[, ordered, ...])

Returns the coordinates along a dimension.

loaded()

Indicates whether the required dependencies are loaded.

persist(dataset)

Should return a persisted version of the Dataset.

sample(dataset[, samples])

Samples the gridded data into dataset of samples.

unpack_scalar(dataset, data)

Given a dataset object and data in the appropriate format for the interface, return a simple scalar.

add_dimension

aggregate

assign

concat_dim

dframe

dimension_type

dtype

groupby

init

length

mask

ndloc

packed

range

redim

reindex

select

shape

sort

validate

values

Parameter Definitions


classmethod applies(obj)[source]#

Indicates whether the interface is designed specifically to handle the supplied object’s type. By default simply checks if the object is one of the types declared on the class, however if the type is expensive to import at load time the method may be overridden.

classmethod compute(dataset)[source]#

Should return a computed version of the Dataset.

classmethod coords(dataset, dimension, ordered=False, expanded=False, edges=False)[source]#

Returns the coordinates along a dimension. Ordered ensures coordinates are in ascending order and expanded creates ND-array matching the dimensionality of the dataset.

classmethod loaded()[source]#

Indicates whether the required dependencies are loaded.

classmethod persist(dataset)[source]#

Should return a persisted version of the Dataset.

classmethod sample(dataset, samples=None)[source]#

Samples the gridded data into dataset of samples.

classmethod unpack_scalar(dataset, data)[source]#

Given a dataset object and data in the appropriate format for the interface, return a simple scalar.